`data class Spiral2D: Any`

Represents a spiral of the form: x(l) = A * sqrt(pi) * int_0^l cos( (pit^2) / 2 ) dty(l) = A * sqrt(pi) * int_0^l sin( (pit^2) / 2 ) dt Asymptotic points at (Asqrt(pi)/2, Asqrt(pi)/2) and (-Asqrt(pi)/2, -Asqrt(pi)/2).

Fields

Name Description
`val cDot: Double`

first derivative of curvature

## Constructors

### <init>

`constructor(cDot: Double)`

Represents a spiral of the form: x(l) = A * sqrt(pi) * int_0^l cos( (pit^2) / 2 ) dty(l) = A * sqrt(pi) * int_0^l sin( (pit^2) / 2 ) dt Asymptotic points at (Asqrt(pi)/2, Asqrt(pi)/2) and (-Asqrt(pi)/2, -Asqrt(pi)/2).

Parameters

Name Description
`cDot: Double`

first derivative of curvature

## Methods

### calculatePoint

`fun calculatePoint(l: Double): Vector2D`

Returns a point in cartesian coordinates at the spiral position l. The point is calculated by using a Fresnel integral implementation.

Parameters

Name Description
`l: Double`

spiral position

ReturnValue

Name Description
`Vector2D`

point in cartesian coordinate

### calculateRotation

`fun calculateRotation(l: Double): Rotation2D`

Returns the rotation of the tangent at the spiral position l.

Parameters

Name Description
`l: Double`

ReturnValue

Name Description
`Rotation2D`

### calculatePose

`fun calculatePose(l: Double): Pose2D`

Returns the pose at the spiral position l.

Parameters

Name Description
`l: Double`

ReturnValue

Name Description
`Pose2D`

### calculateCurvature

`fun calculateCurvature(l: Double): (l: Double)`

Returns the curvature at the spiral position l.

Parameters

Name Description
`l: Double`

ReturnValue

Name Description
`(l: Double)`